Abstract: Growth is the normal change of the human body and getting old is inevitable to human race. As a result, elderly people are subject to many forms of diseases and dangers among which falls are considered very serious in terms of quality of life and socio-economic costs. But falls can be manageable. Health practitioners, scientists and researchers currently combine efforts to develop systems capable of detecting and predicting falls. In the context of fall prediction, the goal of this thesis is to elaborate the actimetric profile of fall sensitive patients to alert them from a potential fall. It mainly consists of developing a system capable of monitoring gait and balance parameters during their daily activities with minimum intrusiveness. These are usually assessed in clinical settings using high-cost tools. In our first contribution, we proposed a generic classification of fall-related systems based on their sensors deployment. These are classified as Wearable, Non-Wearable and Fusion Systems. Based on the generic classification, we proposed the WMFL v1.0 platform in our second contribution. WMFL fuses a Foot Wear Force Sensing device with an Ambient system using IR-sensing floor tiles. The platform can be deployed at homes or in clinics. It ensures an indoor-outdoor protection. In a third contribution, we proposed an early fall detection approach to determine the risk of falling by analyzing the displacement of the Center of Pressure projecting the amount of sway of the Center of Mass on the foot plantar surface. The method uses the spatio-temporal sliding window to alert the patient of a potential fall.